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ABSTRACT
Simulating the physical layer of wireless communication remains
a challenge. Communication standards like OFDM or MIMO sys-
tems go beyond the simple single narrow frequency band, single
antenna model used in popular simulators. Yet, these technologies
gain popularity, since they provide researchers with a plethora of
possibilities that can be explored to invent new protocols or im-
prove existing ones. However, building a detailed and sufficiently
accurate model for such complex systems is a tremendous task that
takes a lot of time. In this paper we present the physical layer model
of MiXiM, which tackles this task. It provides the researcher with
an easy to use interface to the wireless transmission medium. It
models the wireless medium in all three dimensions (time, space
and frequency) supporting the implementation of future wireless
communication standards, but at the same time also supports easy
modeling and simulation of traditional single frequency systems.

1. INTRODUCTION
MiXiM [1] has been introduced [3] as a very powerful extension

to simulate wireless and mobile networks using the discrete event
simulator OMNeT++ [4]. MiXiM aims to provide the developer
with a powerful and feature-rich toolbox to enable and facilitate
the simulation and performance analysis of wireless networks. At
the same time the structure and design of MiXiM is such, that it
tries to hide the complexity of such simulations and provides the
developer with a clean and easy to use interface. This approach
facilitates the development and implementation of specific models
and protocols for wireless communication without having to worry
about the underlying architecture more than necessary.

In order to gain a deeper understanding of the complexity of the
problem, let us start with the main components that are responsi-
ble for the transmission process, shown in Figure 1. In this figure,
we consider the transmission of a single packet, concentrating on
the interaction of the components. Assume, the sending Medium
Access Control (MAC) protocol received a packet that shall be
transmitted. After packing this into a Service Data Unit (SDU),
the MAC protocol hands this packet down to the physical layer for
transmission, together with some information on how the packet
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Figure 1: Aspects of a wireless transmission

shall be transmitted. The physical layer uses this information to
compute a signal that represents the packet. This signal is trans-
mitted via the wireless medium, where it gets distorted by multiple
influences, starting from attenuation due to various causes as well
as other interfering transmitters. The physical layer of the receiver
receives this distorted signal and has to derive a binary representa-
tion that hopefully resembles the original SDU. This is passed to
the receiving MAC layer, together with some meta information like
the received signal strength indicator (RSSI) of the packet.

In this paper we present the physical layer of MiXiM. While
many popular simulators only model single frequency, single an-
tenna systems, such models are not sufficient anymore. The physi-
cal layer of MiXiM is designed with flexibility in mind without sac-
rificing efficiency. It can be used for simple single frequency, single
bit rate systems used for instance in sensor network simulations,
multiple channels, multiple bit rate systems like IEEE 802.11b that
sends the header and the payload of the packet with different bit
rates, systems that change the transmission frequency between each
packet like Bluetooth, Orthogonal Frequency Division Multiplexing
(OFDM) systems like 802.11a that transmit in parallel on multiple
frequencies and Multiple Input Multiple Output (MIMO) systems
that use multiple antennas for the transmission and the reception.

In addition to this wide range of different transmission standards,
there are many different models for the wireless channel, each con-
centrating on a different effect in a certain environment. There are
path loss models that attenuate the transmitted signals according to
the traveled distance, abstract models for shadowing effects due to
obstacles like the log-normal fading, models for fast fading due to
the mobility of the nodes like Rice and Rayleigh fading and many
more.

To complicate things further, standards like 802.11g include a
Forward Error Correction (FEC) and the design of the physical
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layer of MiXiM should not prevent research on the influence of
such codes. This means that all the attenuation effects should be
computable on a sub-packet time scale.

In this paper, we present how the physical layer supports all these
aspects of a wireless transmission. Section 2 gives an overview of
the physical layer structure in MiXiM and explains how the various
aspects shown in Figure 1 are allocated to objects in the BasePhy-
Layer. In Section 3 we explain the AnalogueModels and the Ra-
diomodule . The Decider functionality is detailed in Section 4. In
Section 5 we explain the mapping implementation used to express
and combine multi-dimensional signals. We conclude in Section 6.

2. PHYSICAL LAYER OVERVIEW
The physical layer module is one of the core modules in MiXiM.

It is responsible for message sending and receiving, collision de-
tection, and bit error calculation. Additionally, it is responsible for
applying the AnalogueModels used in the simulation.

Figure 2 shows a detailed class-graph of the physical layer in
MiXiM. The MiXiM physical layer (dashed box in Figure 2) is
divided into five parts: The AnalogueModels are responsible for
simulating the attenuation (like shadowing, fading and path loss) of
a received signal. The Radio module simulates the physical char-
acteristics of the radio, like switching times and simplex / duplex
capabilities. Details on the AnalogueModels and the Radio mod-
ule can be found in Section 3. The ChannelInfo module keeps
tracks of all AirFrames that are currently on the channel and is
detailed in Section 2.2. The Decider is responsible for evaluation
(classification as noise or signal) and demodulation (bit error calcu-
lation) of the received messages. Additionally, it provides channel
sensing information to the MAC layer. Details on the Decider can
be found in Section 4.

Finally, the BasePhyLayer is the “umbrella” module responsi-
ble for the interaction of the different parts of the physical layer.
Additionally, it provides the interfaces to the MAC layer and the
physical layers of other nodes. Details on the BasePhyLayer are
described in Section 2.1. To provide a clear interface and to avoid

memory overhead the BasePhyLayer is the only OMNeT++ mod-
ule. All other modules of the physical layer are designed as pure
C++ classes instead of separate OMNeT++ modules.

2.1 BasePhyLayer
The BasePhyLayer provides the general structure for a physical

layer module in MiXiM.
The AnalogueModels and Decider modules to be used by a

BasePhyLayer are defined in a config.xml file which contains the
names of them as well as the needed parameters. For Analogue-
Model and Decider implementations already included in MiXiM
this is sufficient, own implementations have to be introduced by
sub-classing BasePhyLayer and proper initialization in the over-
loaded getDeciderFromName()- or getAnalogueModelFromName()-
method. A new Radio module can be plugged into the physical
layer by sub-classing BasePhyLayer and overloading the initializ-
eRadio()-method to properly initialize the new Radio module.

One of the main tasks of the BasePhyLayer is the processing
of messages (AirFrames). Whereas the sending of messages is
straight forward and only requires the BasePhyLayer to set some
parameters and calculate the propagation delay (if necessary), the
receiving process is more complicated. Figure 3 shows a state di-
agram of the receive process. Note, that sending an AirFrame in
MiXiM means that it is received by all nodes which potentially are
in the interference range of the sending node. It is the nodes’ task
to figure out which AirFrames are (a) strong enough to be received
and (b) are actually destined for the node. For details, refer to [3].

When the reception of the AirFrame starts (i.e. the first bit ar-
rives), it is first of all registered with ChannelInfo, which keeps
track of all AirFrames on the channel (see Section 2.2 for de-
tails). After that all AnalogueModels are applied to the Signal

contained in the AirFrame (see Section 3). The AirFrame is then
handed over to the Decider, which reschedules the AirFrame to
the time it will make a decision whether to receive and further pro-
cess the AirFrame or to treat it as noise. For details on the decision
process refer to Section 4.1.
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2.2 ChannelInfo
The ChannelInfo module is used to keep track of the Air-

Frames on the channel. As soon as an AirFrame starts (i.e. the
first bit arrives), it is added to ChannelInfo and considered active
until it ends. Once ended, it becomes inactive for ChannelInfo
but is still kept as interfering AirFrame until there is no more ac-
tive AirFrame intersecting with it in time. The AirFrames have
to be kept in order to be able to calculate the signal to interference
plus noise ratio (SINR) of a specific AirFrame currently being re-
ceived (for which all other AirFrames on the channel are interfer-
ence). ChannelInfo is able to return all AirFrames currently on
the channel intersecting with a given, not outdated, time-interval.
This service is used by the Decider to calculate SINR values.

Figure 4: AirFrames on the channel

Consider the simple scenario in Figure 4 where the AirFrames
A, B and C arrive one after another. They are handled by Chan-

nelInfo as follows:

t0: A starts and becomes active.

t1: B starts and becomes active.

t3: A ends and becomes inactive but is not yet deleted since it
intersects with B, which is still active.

t4: C starts and becomes active.

t5: B ends and becomes inactive but is not yet deleted since it in-
tersects with C, which is still active; A is deleted since there
is no (more) active AirFrame it intersects with.

t6: C ends and is deleted since there is no active AirFrame it
intersects with; B is deleted since C is not active anymore.

Given the above example, consider B to be an AirFrame which
is actually being received (not treated as noise) and thus evaluated
by the Decider (at time t5). Since AirFrame B as well as the
interfering AirFrames A and C have to be taken into account in
order to calculate the SINR, all of those have to be accessible to the
Decider. This is why ChannelInfo does not delete an AirFrame

as long as there is an active one overlapping in time (in the example,
A is not deleted as long as B is active). Thus ChannelInfo is able
to hand over a currently received AirFrame (B) together with all
interfering AirFrames (A and C) on demand.

2.3 Signal Concept
Every AirFrame contains a Signal which describes the actual

physical signal sent over the channel. While it is created at the
senders MAC layer, it is heavily affected by the receivers Ana-

logueModels which model the influences of the wireless environ-
ment it travels through.

To represent a physical signal the Signal class contains Map-

ping instances for transmission power, bit-rate, attenuations and
receiving power which all represent mathematical mappings defin-
ing the according data over time and maybe more dimensions like
frequency or space. The lower part of Figure 2 shows the relation-
ships of the different classes: Each AirFrame contains a Signal

object, which in turn contains various Mapping objects describing
the different properties of the physical signal.

While transmission power and bit-rate Mappings are added to
the Signal by the MAC layer module of the sender, the attenuation
Mappings are defined and added by the AnalogueModels used at
the receiving physical layer module. The receiving power Mapping
is defined by multiplying all of the attenuation Mappings element-
wise with the transmission power Mapping. To avoid unnecessary
calculations this is done only on demand. The receive power is
used by the Decider to calculate SINR and to perform the bit-
error analysis. Details of the Mapping class and its implementation
can be found in Section 5.

3. RADIO AND ANALOGUE MODELS
In this section we describe how the influence on a Signal on

its way from the sender to the receiver(s) is considered and real-
ized in our model. When transmitted by the wireless channel, a
Signal is attenuated due to several effects which are modeled and
applied to the Signal by AnalogueModels. Furthermore the state
of the receivers Radio possibly affects the transmitted Signal. So
this state is represented by the RadioStateAnalogueModel and
applied accordingly.

3.1 Radio
The Radio of a NIC is part of the physical layer-module and

implemented as a state-machine. There are two main functionali-
ties for the Radio module: simulation of radio switching times and
simulation of the effects a radio has on signal reception.

In state-of-the-art hardware, the time it takes to switch a radio
from transmit to receive or sleep are usually very small and thus
are often neglected in simulation. However, there are scenarios
where switching times should not be neglected, since they can have
significant influence on the simulation results. In MiXiM we thus
support both scenarios: simulation of switching-times for a radio-
state transition as well as zero-time switching. The MAC layer can
switch the Radio to another state by calling setRadioState() on the
MacToPhyInterface. In case of a non-zero switching times it is
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Figure 5: TX-power mapping multiplicated with RSAM mapping

notified by a control-message of kind RADIO_SWITCHING_OVER
as soon as the simulated switching process has finished. For zero
switching times, there are no control messages sent and thus the
performance (speed) of the simulation is not degraded.

Most radios are half-duplex, meaning they can only send or re-
ceive at a time, but not concurrently. However, there also exist du-
plex radios which can concurrently send and receive. The standard
Radio module in MiXiM is half-duplex but can be easily extended
for full-duplex operation. In the following, we will focus on half-
duplex radios.

The state of the Radio affects a received signal. If in send, sleep
or off mode, no signal can be received. In MiXiM, this is repre-
sented by the RadioStateAnalogueModel which returns dynam-
ically created attenuation-step-mappings. The Radio tracks the
states it is in over time and maps the several states to attenuation
values. If the Radio is in the receive state, there is no attenuation,
otherwise the signal is attenuated by 100%. This concept can be
easily extended to support e.g. two independent antennas by ex-
ploiting the spatial dimension of the attenuation mapping.

3.2 Analogue Models
The AnalogueModels are used to simulate effects like path-loss,

shadowing and fading which affect the signal during its transmis-
sion. A physical layer can contain an arbitrary number of Ana-
logueModels, which can be plugged-in as described in Section 2.1.
A Signal arriving at the physical layer will be subsequently pro-
cessed by all AnalogueModels.

The AnalogueModel class itself is only an interface defining a
filterSignal()-method which takes the Signal to be processed as an
argument. Actual implementations of the interface implement this
method by taking the information they need from the passed Sig-

nal (like start and end time of the Signal or the HostMove of the
sender), create an attenuation Mapping which describes the attenu-
ation caused by the effect this AnalogueModel simulates and add
it to the Signals attenuation list. To describe the attenuation map-
ping for the signal the AnalogueModel can use an own Mapping

implementation or only calculate the attenuation values of some
points of interest and put them into one of the default Mapping
implementations. For details refer to Section 5.

Figure 5 shows an example of a TX-power signal, which is fil-
tered by two AnalogueModels. The step-function in Figure 5(b)

represents the attenuation of a RadioStateAnalogueModel. The
state of the radio changes at t = 0.2 to RX and at t = 3.05 back to
TX or SLEEP. In Figure 5(c) a simple path-loss AnalogueModelis
shown. The resulting RX-power is shown in Figure 5(d).

Note, that we represent attenuation as a quantity between 0 and
1 without a unit. An attenuation of 100 % is represented as 0 and
no attenuation (0 %) as 1. The advantage of this approach is that
the resulting RX-mapping can be simply calculated by multiplying
the TX-mapping with all attenuation mappings.

4. DECIDER
The decider is the evaluation component of the physical layer. It

is responsible for evaluating received Signals, which includes cat-
egorizing arriving Signals as interference or messages to receive
and, at the end of receiving a message, calculating the bit-errors for
that message. Another task of the decider is the evaluation of the
channel, i.e. to perform carrier sensing and report the channel state
to the MAC layer.

4.1 AirFrame Evaluation
Each AirFrame is processed several times by the processSig-

nal()-method of the decider, as indicated in Figure 3. The num-
ber of times it is processed (and also how it is processed) actually
depend on the specific Decider implementation. However, the ex-
ample below represents the most common case and also reflects the
mandatory processing events for each AirFrame.

1. Upon the reception of the first bit of an AirFrame the decider
has to process the Signal of that AirFrame for the first time.
It basically only has to decide, at which point in time it can
decide whether the packet should be treated as noise or not
and returns this time-point to the physical layer. Usually, the
time to decide whether to receive an AirFrame or treat it
as interference / noise is after the physical layer preamble is
completely received. However, the Decider can also make
the decision immediately or at any other point in time.

2. The next time the decider gets the Signal, it has to decide
whether the AirFrame is considered interference or whether
it is actually being received. This is done by evaluating the



SINR-Mapping up to the current time (e.g., end of the pream-
ble). To do so, it requests all Signals intersecting with this
time-period from ChannelInfo. In the example of Figure 4
this would be the interval between t1 and t2 (assuming that
t2 denotes the end of the preamble of AirFrame B). The De-
cider has to calculate the received power (as shown in Fig-
ure 5) in that time-interval for both, AirFrame A and B. It
obtains the SINR by dividing the receive power of AirFrame
A by that of B.

If the AirFrame is considered to be interference, the De-

cider returns a special signal to the physical layer, indicat-
ing that does not want to get this AirFrame again for pro-
cessing. If the AirFrame is considered to be a message to
receive, the decider will return the end of the Signal to the
physical layer as the next point in time it wants to process the
Signal.

3. When the AirFrame is completely received, the decider has
to evaluate the contained Signal for bit-errors. It has to cre-
ate the SINR-Mapping (as in the previous step), but this time
for the whole duration of the Signal. In the example of Fig-
ure 4 this means that also the receive power of AirFrame C
has to be calculated.

How the SINR is used to determine the bit-errors of the Air-
Frame depends on the specific Decider implementation. In
the simplest case, the SINR is just checked against some
threshold and the AirFrame is considered lost if the thres-
hold is exceeded. Another option is to determine a bit-error
probability based on bit-error curves.

The Decider has to pass the decapsulated MAC-packet up
to the MAC layer together with a DeciderResult. The
DeciderResult contains the evaluation data for the MAC-
packet (packet lost / correctly received, number of bit-errors,
etc.) where the specific evaluation data again depends on the
concrete Decider implementation.

4.2 Channel Sensing
As mentioned above the decider is also responsible for evaluat-

ing the wireless channel, i.e. deciding whether the channel is busy
or idle at a specific point in time. This is an important functional-
ity provided to the MAC layer which is needed for Carrier Sense
Multiple Access (CSMA) protocols.

In a real system such a channel sensing takes time, however this
time is often negligible an thus not accounted for in simulation.
MiXiM provides both possibilities: channel sensing in zero-time
as well as simulation of the channel-sensing process over time.

To get the instantaneous state of the channel without simulating
time for the sensing process, the MAC layer can use the method
getChannelState() offered by the MacToPhyInterface. It imme-
diately returns a so-called ChannelState-object containing the
channel state information. The other option for the MAC layer is
to send a message of kind CHANNEL_SENSE_REQUEST to the
physical layer through the control-channel. The Decider will then
sense the channel for the specified amount of time and answer by
sending a control message containing the ChannelState-object
reflecting the channel state.

A ChannelState-object itself contains an RSSI value and a flag
that indicates whether the channel is considered idle or not. The se-
mantic of this idle-flag depends on the implementation of the par-
ticular decider. The BaseDecider considers the channel idle if no
Signal is received at the moment of the request.

5. MAPPING
Many aspects of simulating the wireless transmission process

can be expressed by mathematical mappings and operations on them.
The signal sent to the channel might consist of a mapping for the
power fT X : time× f requency× space → power and one for the
bit-rate fbitrate : time× f requency× space → bitrate (in MiXiM
the bit-rate represents the coding / modulation combination used
for a signal). The attenuation defined by the AnalogueModels
can be represented by further mappings fatt1..n : time× f requency×
space→ attenuation defining an attenuation factor varying in time,
frequency and space. The resulting receiving power can then be
calculated by multiplying the attenuation mappings element-wise
with the power mapping which results in another mapping fRX :
time× f requency× space → power where fRX = fT X ×∏ fatt1..n .
Further the SINR needed by most Deciders to evaluate if a sig-
nal was received correctly is calculated by dividing the receiving
power of the signal to evaluate ( fRXS ) by the receiving power of
the interference, which is the summed up receiving power of every
signal interfering with the signal to be evaluated. So we get further
element-wise operations on mappings: fSINR =

fRXS
∑ fRXnoise1..n

. The

Decider then has to evaluate the different SINR values in time,
frequency and space inside the SINR mapping.

The mapping abstraction enables us to compute the SINR of a re-
ceived packet at any interesting point in time, frequency and space
in a consistent fashion. For systems that are not as complex, the
consistency of the abstractions allows us to use much simpler mod-
els without paying an inadequate price for the generalization.

In the following sections we describe how we implement the
mapping abstraction and the necessary operations in MiXiM.

5.1 Requirements for a Mapping
In order to define a Mapping class for MiXiM, we first need a

list of requirements it has to fulfill.
First of all, the Mapping class should support almost arbitrary

domains. The simplest case is just a mapping from time to power
or bit-rate, i.e. f : R→ R. But we can also have mappings defined
in time, frequency and space f : R×R×R → R. So while the
codomain stays the same the domain can change. Generally, we can
assume that a codomain of a single real value is sufficient because
if we need to represent something like f : R→R×R we could just
use two separate mappings f1 : R→ R and f2 : R→ R to achieve
the same.

Naturally, the Mapping class also has to provide the mapping
functionality itself, meaning given a number of arbitrary argument
values in the mappings domain it has to return the specific mapped
value for these arguments. This can either be done by using the
passed arguments and maybe some other parameters to evaluate a
mathematical formula and return the result, or by a lookup of the
value for the specified argument. Note, that if there is no value
defined for this specific argument, the Mapping class also has to be
able return a value by interpolating between adjacent arguments.

At last, since the Decider has to evaluate the values of an SINR
mapping but probably can’t check every possible point in time, fre-
quency and space, the Mapping class has to provide the possibility
to iterate over a set of given arguments.

5.2 Mapping Class Overview
The above requirements led to the modeling of the Mapping in-

terface as shown in Figure 6. The most important class members
are shown in Figure 7.

A single dimension (like time) is represented by the Dimension
class. The domain of a Mapping can consist of more than one di-
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mension (e.g. time and frequency) and is defined by the Dimen-

sionSet class which contains one or more Dimension objects.
This enables us to define arbitrary domains and fulfill the above re-
quirements.1 Externally, a Dimension is represented by a case sen-
sitive name (like "frequency"), internally a simulation wide static
unique id is used. Since this id is used to define the iteration order
for multi dimensional mappings (see section 5.3) it is important
to know that the time dimension always gets zero as id and every
other id is an increasing integer assigned at the first creation of a
Dimension object for a dimension.

To be able to define positions in Mappings with arbitrary domain
we define the Argument class. It maps from every Dimension of
a domain to a value defining the position of the Argument instance
in that dimension.

The Mapping and ConstMapping classes are interfaces which
define the methods a class has to provide to be able to represent a
mathematical mapping. The ConstMappingIterator and Map-

pingIterator classes are interfaces as well and define the meth-
ods provided by an iterator for a mapping to be able to iterate over
the points of interest of a mapping. The use of interfaces separates
the information of how the data of a mapping is created from the
way it is accessed. This enables us to provide methods which are
generally applicable for any mapping (e.g. mathematical opera-
tions). It also allows implementing different kinds of data sources
for a mapping (e.g. a mathematical formula or a number of inter-
polated key entries).

The difference between the Const- and non-Const-version of the
interfaces is that the Const-version misses the setValue()-method so
implementations do not have to provide a way to change the rep-
resented mapping arbitrarily. This is useful if a formula is used to
represent the mapping where the parameterization can be changed
but not the values themselves directly.

An important design decision we made is that every Mapping has
to contain the time in its domain. Since signals are always defined
over time and almost any mapping refers to a signal this does not
constrain the user too much while it enabled us to use the more
accurate simtime_t as type for positions in the time dimension.

5.3 Mapping Iteration
While it is trivial to iterate over a one dimensional mapping be-

1Note, that we usually refer to the domains “time”,“frequency”,
and “space” in this paper because these will be the domains mainly
used in MiXiM.

+ getDimensions() : DimensionSet
+ createConstIterator() : ConstMappingIterator*
+ getValue(position : Argument) : double

# dimensions : DimensionSet

ConstMapping

+ setArgValue(dim : Dimension, value : double) : void
+ getArgValue(dimension : Dimension) : double
+ setTime(time : simtime_t) : void
+ getTime() : simtime_t

Argument

+ createIterator() : MappingIterator*
+ setValue(position : Argument, value : double) : void

Mapping

Figure 7: The Mapping members

cause there exists an unique order of the values, iteration over mul-
tidimensional mappings is more challenging.

We used the ordering of the Dimensions at this point to get a
well defined iteration order every MappingIterator has to pro-
vide. A mapping with a multidimensional domain, e.g., f : time×
f req×space→R can also be represented by a nesting of mappings
with a one dimensional domain f : space→ ( f req→ (time→R)).
So f would map from a number of points in space to a number of
“sub-mappings” which again map from a number of points in fre-
quency to a number of further “sub-mappings” which finally map
from a number of points in time to an actual value.

The ordering feature of the Dimension class is used to define
the ordering used to iterate over the mapping. Let us assume the
dimensions are ordered space > f requency > time. We would start
iterating at the first position in space and directly go down to the
according sub-mapping (frequency). Here we would take the first
position in frequency and go down to its according sub-mapping
which is a one dimensional time mapping and has a well defined
iterator. When we reach the end of this sub-mapping we go back
to the “parent-mapping” and go to its next position in frequency,
which again points to a time sub-mapping. After all frequency sub-
mappings are handled, the same process is repeated for the next
point in the space sub-mapping. This gives a well defined way to
iterate over arbitrary dimensional mappings and also enables us to
define a “bigger than”-comparison of Argument-objects.

5.4 Mapping Implementations
There are several implementations of the Mapping interface al-

ready included in the current version of MiXiM. These implemen-
tations actually already support most of the scenarios we can think
of. Writing own AnalogueModels or creating own Signals is
simply done by using these implementations or sub-classing from
them.

The first implementation is the SimpleConstMapping. It is
meant to be used as a base class for any ConstMapping imple-
mentation which is based on a mathematical formula and there-
fore can be calculated every time its value at a specific position is
needed. The only method that has to be implemented is the get-
Value()-method. Additionally, key entries have to be defined in
order to be able to iterate over the Mapping. An implementation of
the getValue()-method takes the values of the passed position and
maybe some parameters previously set during initialization to cal-
culate the value of the represented mapping at the position specified
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Figure 8: MultiDimMapping structure

by the passed Argument.
The next implementation provided is the TimeMapping class.

It is intended to be used for any mapping where time is the only
domain. The TimeMapping is implemented by using an extended
std::map which is able to interpolate between entries with a given
interpolation method to return values for positions for which no
values have been set.

The last implementation, MultiDimMapping, is used to repre-
sent any Mapping whose domain has more dimensions than time.
It uses the nesting-method explained in Section 5.3 meaning it rep-
resents a multidimensional mapping by mapping from the key en-
tries in one dimension to a number of sub-mappings which again
are mappings from the key entries in their dimension to a number
of sub-mappings until the time dimension is reached (which always
is the last since its id is zero). The mappings of the time dimension
are not mappings to a further sub-mapping but to an actual value.
This results in the tree-like structure shown in Figure 8. Each Mul-

tiDimMapping instance represents a mapping from one dimension
to a number of sub-mappings. These sub-mappings can then be
instances of further MultiDimMappings or they can be TimeMap-
pings which represent the leafs of the tree-like structure. The ac-
tual mapping from the positions in the current dimension to the
sub-mappings is done by the same extended std::map used for
the TimeMappings with special interpolation methods which are
able to interpolate a whole sub-mapping.

5.5 Mapping Utilities
There are a number of utility methods provided in a Mapping-

Utils class. These methods enable the easy creation and combina-
tion of mappings without having to worry about the implementation
details.

There are methods which add, subtract, divide or multiply two
ConstMapping instances element-wise and return the result in a
new Mapping instance. These methods are using the same ap-
plyElementwiseOperator()-method which applies a passed operator
to the values at every key entry of both of the passed mappings and
returns the result in a new Mapping instance. The passed operator
can be any operator which takes two double values and returns a
new double value, e.g., the std::plus or std::multiplies op-
erator. The set of key entries of the result is the union of the sets of
key entries of the passed mappings.

Figure 5 shows an example of the multiplication of 1-dimensional

mappings and the resulting key entries. Figure 5(a) shows a power
mapping using a different power for the preamble and the rest of
the message. Figure 5(b) shows the radio state model of the re-
ceiver and Figure 5(c) a simple path-loss model. Note that the path
loss model has a lot more key entries than the power and radio
state models. Figure 5(d) shows the multiplication result and its
key entries. In this 1-dimensional case the resulting mapping is
a TimeMapping-instance which interpolates between the union of
the key entries of the input methods. If the result is multidimen-
sional an instance of MultiDimMapping is returned.

The applyElementwiseOperator()-method can even operate if the
passed ConstMappings are not of the same domain, as long as
the domain of the second ConstMapping is a subset of the first
one. This is, e.g., useful for using a simple AnalogueModel which
only defines an attenuation mapping over time together with a more
complex Signal whose power mapping is defined over time and
frequency. This would obviously imply the assumption that the at-
tenuation over time defined by the AnalogueModel is identical for
every frequency.

An example for the multiplication of a two-dimensional power
mapping with a one-dimensional RadioStateAnalogueModel is
shown in Figure 9. Figure 9(a) shows the power mapping defined
over time and frequency where the dots mark the key entries. Fig-
ure 9(b) shows the radio state mapping which is only defined in
the time domain. To be able to multiply the one-dimensional ra-
dio state mapping with the two-dimensional power mapping the
method “copies” the radio state mapping for every frequency the
power mapping has key entries in, in this case for frequency of
2.412, 2.422 and 2.432. The result can be seen in Figure 9(c). Then
the power mapping and the “filled up” radio-state mapping can be
multiplied as usual by multiplying the values at the key entries de-
fined by both mappings. The result is shown in Figure 9(d).

The MappingUtils class also provides a method called cre-
ateMapping() which takes a DimensionSet and an interpolation
method and returns an appropriate Mapping instance (which will be
either a TimeMapping or a MultiDimMapping, depending on the
passed DimensionSet). So the user doesn’t have to care about cor-
rect creation of the Mapping. The available interpolation methods
are “STEPS” which interpolates by using the next smaller key en-
try as value (resulting in a step-like function), “NEAREST” which
uses the nearest key entry as value and “LINEAR” which inter-
polates linearly between the next smaller and the next bigger key
entry.

6. CONCLUSION
In this paper we present an architectural overview of the model-

ing and the implementation of the physical layer within the MiXiM
simulation framework. MiXiM is a simulation framework support-
ing wireless transmissions within OMNeT++. One of the main
advantages of the presented approach is that it supports model-
ing of arbitrary complex signals (in time, frequency and space)
but at the same time also supports simple single-frequency, single-
(isotropic)-antenna models without carrying the overhead of com-
plex models.

The modular structure of MiXiM enables a high degree of model
reuse and the almost arbitrary combination of models. The same
simulation can be carried out with a simple path-loss model or with
complex shadowing and fading models just by adding / removing
the appropriate models in the configuration file.

MiXiM already contains a number of AnalogueModel imple-
mentations for path-loss, shadowing, and fading as well as popular
standards as IEEE 802.11 and 802.15.4 (ported from the Mobility
Framework [2]). However, the main focus so far was on the archi-
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(a) two dimensional TX-power mapping
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(b) one dimensional radio state analogue model(RSAM) mapping
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(c) filled up two dimensional RSAM mapping
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Figure 9: 2D TX-power mapping multiplicated with 1D RSAM mapping

tectural framework and we hope more models will be added by the
community.
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